Effects of sterilization on an extracellular matrix scaffold: part II. Bioactivity and matrix interaction.

نویسندگان

  • Jason Hodde
  • Abram Janis
  • Michael Hiles
چکیده

Small intestinal submucosa (SIS) has been successfully used to treat a variety of damaged or diseased tissues in human patients. As a biologic scaffold, SIS stimulates repair of damaged or diseased tissues and organs with tissue that is similar in structure and function to the material it was meant to replace. To meet clinical safety requirements, biologic materials from animal tissues must undergo processing treatments to minimize host immune response and to eliminate the possibility of disease transmission. The effect of peracetic acid disinfection, lyophilization, and ethylene oxide sterilization on the in vitro bioactivity of the processed SIS was therefore examined in murine fibroblasts and pheochromocytoma (PC12) cells. Specifically, the ability of processed SIS to support fibroblast attachment, to stimulate PC12 cell differentiation, and to upregulate fibroblast VEGF secretion was examined. Fibroblasts attach to the sterilized SIS, remain viable, and more than double their secretion of VEGF as a result of interacting with the SIS matrix components. Additionally, PC12 cells exhibit increased neurite outgrowth following stimulation by SIS matrix proteins versus controls. We conclude that a biologic scaffold can be prepared for human use and still retain significant bioactivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells

Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

The Sheep’s Urinary Bladder Matrix as a Potent Biological Materials Resource -an Ultrastructural Study

  Background and Objectives: Biological scaffold resources composed of extracellular matrix (ECM) have been shown to make easy the practical remodeling of various tissues in both animal and human studies. The goal of current study was to make sheet form of ECM from sheep’s urinary bladder. Methods: ECM was extracted from Sheep’s urinary bladder according to standard method. Scanning electron ...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2007